Standardized Clinical Video Analysis of the Injured Runner

Bryan Heiderscheit, PT, PhD Professor

Department of Orthopedics and Rehabilitation Department of Biomedical Engineering Director, UW Runners' Clinic Director, Badger Athletic Performance Research Co-director, UW Neuromuscular Biomechanics Lab

I have no relevant financial relationships to disclose

Examination Components

UW Neuromuscular

Biomechanic

Intake Form

- Facilitate history taking
- Describe training factors
- Define runningrelated goals

			UWHealth	
UW SP	ORTS MEDICINI		University of Wisconsin	
RUN	INERS' CLINIC		Sports Medicine	
Name:	Email:			
BACKGROUND				
What brings you here?				
When did the current problem begin?				
How did it happen?				
Do you have pain while running? 🗌 Yes 🗌 No If so, v	vhat happens to the p	ain while running? 🗌 incr	eases decreases	
Do you have pain <i>after</i> running? 🗌 Yes 🗌 No If so, h	ow long does it last?	<pre>1 < 1 hr 1 - 2 hrs </pre>	2-6hrs 6+hrs	
Does anything alleviate the problem?	est stretching	heat/cold other:		
Past injuries: Right Left running related Low back pain	d Compartment sy Achilles tendoni Plantar fasciitis Other ibuprofen Tyler others:	Right Left Indrome	running related	
TRAINING				
Years running: How would you Volume: miles/week Speed work: Yes No Hill Repeats: Stretching: before run	classify your level of r months/y] No Warm-up: oughout day	unning? recreation ear Pace: Yes No Cool-de	al competitive min/mile own: Yes No	
Typical racing distance: 5-10K 1/2 marathon 1	marathon 🗌 ultradis	tance triathlon oth	er	
What foot-strike pattern do you use?	midfoot for	efoot 🗌 uncertain		
FOOTWEAR				
Shoe brand/model: Shoe Orthotic/Insert Yes No If yes: custom	age: months over the counter	Are your shoes comforta Heel lift:	able? Yes No left none	
RUNNING MOTIVATION AND GOALS				
What is the primary reason you run? 🗌 general fitness [weight control	tress control 🗌 social rea	asons competition	
What are your running goals? [check all that apply]				
continue running at current level increas	e running to higher lev	el		
compete in specific race: distance	da	te		
other:				
v10.29.2013 © Helsenchet			A	

UW Neuromuscu

Biomechanics

Lab

Running-Specific Outcome Tool

- Develop a running specific tool for assessing improvement following an injury that is valid, reliable, and sensitive to change for use in clinical practice and research
 - Condition specific tools (e.g., Kujala, Visa-A)
 - Limited assessment of return to sport
 - Limits research with diverse injuries
 - Body region specific tools (e.g., LEFS, FAOS)
 - Demonstrate significant ceiling effect
 - Too specific to a single region

University of Wisconsin Running Injury and Recovery Index (UWRI) Development Process

Interview injured runners of all performance levels

42 questions indentified as factors relating to the running injury

Importance product: Assess question importance and relevance

9 key questions identified and included in UWRI

Question clarification process with UWRI

UWRI

- University of Wisconsin Running Injury and Recovery Index
- Perfect score = 36
- Good psychometric properties:
 - test-retest reliability
 - Internal consistency
- MCID in progress

Instructions: Consider your current running injury over the past 7 days when answering each question. Check (🗵) the appropriate box. 1. How does your running injury impact your ability to perform daily activities? Slightly Moderately Significantly Unable to No impact impact impact impact perform 2. How frustrated are you by your running injury? Not Mildly Moderately Significantly Extremely frustrated frustrated frustrated frustrated frustrated 3. How much recovery have you made from your running injury? Significant Moderate Minimal Complete No recovery recovery recovery recovery recovery 4. How much pain do you experience Significant while running? No pain Minimal Moderate Unable to pain pain pain run п п 5. How much pain do you experience Significant Unable to during the 24 hours following a run? No pain Minimal Moderate pain pain pain run 6. How has your weekly mileage or weekly running time changed as a Minimally Moderately Significantly Unable to Same or result of your injury? greater than reduced reduced reduced run before my injury 7. How has the distance of your longest weekly run changed as a result of your Same or Minimally Moderately Significantly Unable to injury? longer than reduced reduced reduced run before my injury 8. How has your running pace or speed changed as a result of your injury? Minimally Moderately Significantly Unable to Same or faster than reduced reduced reduced run before my injury 9. How does your injury affect your confidence to increase the duration or Confident to If Lincrease Neutral If I increase I I cannot intensity of your running? increase m might be might get increase my running fine worse running OFFICE USE ONLY SCORE Scoring Key: 4 3 1 0 v12.13.2012 @ Helderschel Page 2 of 3

University of Wisconsin Running Injury and Recovery Index (UWRI)

Nelson (2013) J Orthop Sports Phys Ther (abstract)

UW Neuromuscular

Biomechanics

Lab

Physical Examination

Goals:

- Determine injury diagnosis/severity in combination with history
 - Identify involved tissues
- Identify physical impairments and characterize musculoskeletal status
 - Consider all aspects relevant to running
 - Necessary to determine if running mechanics are an appropriate match

Motion Analysis Options

Reliability

- Orthopedic walking gait assessment
 - moderate inter-examiner reliability
 - good intra-examiner reliability
 - increased reliability with increased experience

Brunnekreef (2005) BMC Musculoskeletal Dis

- Rearfoot motion during walking
 - poor inter-observer
 - poor-fair intra-observer

Keenan and Bach (1996) Arch Phys Med Rehab

- □ improve reliability
 - systematic approach
 - likert-scale measures
 - experience

Kotecki et al. (2013) J Orthop Sports Phys Ther

Assessing Running Mechanics

- □ 3 common questions:
 - 1. overground or treadmill?
 - 2. what type of camera?
 - 3. what type of video software?

Treadmill or Not

	Overground	Treadmill
Ecological validity	Yes	No
Control Speed	No*	Yes
Fixed relationship between camera and runner	No*	Yes

*requires additional equipment

Are Mechanics Different on Treadmill?

- Step length is commonly reduced when running on a treadmill
- Running form normalizes within 6 min of treadmill running

Lavcanska et al. (2005) Hum Mov Sci

Treadmill Specifications

- 1. Stiff running deck
 - If too compliant, runner will adjust mechanics (e.g., increase lower extremity stiffness)
- 2. Regulated belt speed
 - If motor is underpowered, then the belt speed decreases at foot-ground contact

Riley et al. (2008) Med Sci Sports Exerc

Equipment Set-up

- Cameras must be placed perpendicular to the plane of interest
 - Frontal plane is most sensitive
 - Transverse plane is inferred
- Adequate space for video capture from multiple angles
 - Able to view whole body from side and back

Out of Plane Motion

What Camera?

Sampling rate (frames per second, fps)

- Influences the number of pictures you have to determine movement
 - Human eye ~16 samples/s
 - Video camera 30-60 samples/s
 - Digital camera \leq 1000 samples/s
- Observation alone is insufficient to capture body posture at specific events of the gait cycle

Maximum Pronation

Barefoot walking

Shod running with custom orthotics

UW Neuromuscular Biomechanics Lab

Timing of Events

Running speed of 3.83 m/s (8.57 mph or 7 min/mile)

- Time interval between samples:
 - Eye = 62.5 ms
 - Video camera (30 fps) = 33.3 ms
 - Video camera (60 fps) = 16.7 ms
 - High speed camera (100+ fps) = < 10 ms

High Speed Cameras

2000 fps

120 fps

What about Video Software?

Benefits

- Potential to display 2 videos synchronously
- Patient education
- Database structure
- Does not increase accuracy
 - Still a 2D image

Phone and Tablet Options

- □ iPhone 6 records:
 - 60 fps at 1080p
 - 120/240 fps at 720p
- □ iPad Air 2 (not mini)
 - 120 fps at 720p
- Limitations
 - digital zoom

- Many video analysis Apps
 - UberSense
 - CoachMyVideo
 - iCoachView

EMR Considerations

 Video storage is rarely a basic feature of electronic medical record systems

- Potential need for a custom-build
- Upload of report as PDF is feasible, but limits ability to search information when compiling data
- At minimum, need to ensure the interpretation of the video is included in examination for billing purposes

Joint Interaction

No Single Optimum Form for All

- Physical differences prevent everyone from using the same form
 - Strength, bony structure, range of motion, tissue stiffness, mass distribution, general fitness, running history...
- Instead, there are key characteristics to avoid
 - Overstriding
 - Bounce
 - Compliance

Avoid Overstriding

 Foot inclination angle

Heel-COM distance

Knee flexion angle

Tibial angle

Avoid Bounce

COM vertical displacement

Maximum Height

Minimum Height

Avoid Excessive Compliance

- Partially reflected in COM vertical displacement
- Evaluate frontal plane collapse

Joint center alignment Lateral | | pelvic tilt Knee п separation Foot-COM П placement

Key Parameters

- Focus on loading response (initial contact to mid-stance)
 - characterize body control during energy absorption

Key Parameters

<u>Frontal</u>

Midstance

- Joint center alignment
- Lateral pelvic tilt
- Foot-COM placement
- Knee separation
- Rearfoot/shoe alignment

Initial Contact

Foot-ground angle

Sagittal

- Heel-COM distance
- Knee flexion angle
- Tibial angle
- Midstance
 - Max knee flexion angle
 - Max ankle dorsiflexion angle

COM vertical displacement

Kinematic Predictors of Kinetics Peak GRFv

Wille et al. (2014). J Orthop Sports Phys Ther

Kinematic Predictors of Kinetics Braking Impulse

Wille et al. (2014). J Orthop Sports Phys Ther

Kinematic Predictors of Kinetics Energy Absorption at Knee

Pseudo-quantitative Approach

- Estimate load to body based on posture at landing and midstance
- Use physical exam findings to interpret appropriateness of running mechanics
- Each parameter is assessed using 3-pt or 5-pt scale
 - Consideration for the inherent limitations with 2D video analysis

-2 -1 Appropriate +1 +2	
-------------------------	--

C Key parameters demonstrated strong agreement between raters ($\kappa > 0.80$)

Kotecki et al. (2013) J Orthop Sports Phys Ther

Joint Center Alignment Midstance

Lateral Deviation

Appropriate

Medial Deviation

Common Injuries:

- PF pain
- ITB syndrome
- Greater trochanter syndrome
- Piriformis syndrome

Lateral Pelvic Tilt Midstance

Common Injuries:

- Patellofemoral pain
- ITB syndrome
- Greater trochanter syndrome
- Piriformis syndrome
- Lumbopelvic pain

Foot-COM Placement at Midstance

Appropriate	Mild	Excessive
	crossover	crossover

As running speed increases, this distance decreases

Common Injuries:

- MTSS
- Bone stress injuries
- Greater trochanter syndrome

9:30 min/mile

UW Neuromuscular Biomechanics Lab
Knee Separation at Midstance

Narrow with stance leg deviation

Narrow with swing leg deviation

Appropriate

Wide

Redundancy between Measures

Lateral knee alignment

Increased knee separation

Narrow foot placement

Foot Inclination Angle at Contact

Heel-strike (>10°)	Rearfoot	Midfoot	Forefoot
-----------------------	----------	---------	----------

Foot Inclination Angle at Contact

heel-strike

rearfoot

midfoot

forefoot

Horizontal Distance from Heel to COM at Contact

Knee Flexion Angle at Contact

ExcessiveMildAppropriateMildExcessidecreasedecrease(~20°)increaseincrease	xcessive decrease d	Excessive decrease
---	------------------------	-----------------------

- Common Injuries:
 - Patellofemoral pain
 - Infrapatellar tendinopathy
 - ITB syndrome
 - Greater trochanter syndrome
 - Piriformis syndrome

Tibial Inclination Angle at Contact

Vertical	Mild inclination	Excessive inclination
----------	---------------------	-----------------------

- Common Injuries:
 - MTSS
 - Bone stress injuries
 - Exertional compartment syndrome

Maximum Knee Flexion Angle

Excessive	Mild	Appropriate	Mild	Excessive
decrease	decrease	(~40°)	increase	increase

- Common Injuries:
 - Patellofemoral pain
 - Infrapatellar tendinopathy
 - ITB syndrome
 - Greater trochanter syndrome

Ankle Dorsiflexion at Midstance

Decrease

Appropriate (knees over toes)

Increase

- Common Injuries:
 - Calf strains
 - Achilles tendinopathy
 - Plantar fasciitis

COM Vertical Displacement

Appropriate	Mild	Excessive
(6-8cm)	Increase	Increase

Maximum Height

Minimum Height

Mid-flight

Midstance

Putting it all Together

□ 17 y/o with chronic knee pain and tibial stress reactions

9:00 min/mile 168 steps/min

Lower Leg Injuries and Running

Tibial Stress Injuries

- Mechanics of concern:
 - Impact loading rate
 - Braking impulse
 - Tibial inclination angle at initial contact
 - COM vertical displacement
- Meta-analysis results showed significant differences between the vertical loading rates of the those with and without prior lowerlimb stress fractures

Zadpoor and Nikyooan (2011) Clin Biomech

Running Forces and Loading Rate

Decreased Loading Rate

Braking Impulse

Stride Length

- Farther the foot hits the ground in front of the body's COM (longer stride), the greater the braking impulse
- Body has to overcome this braking impulse to maintain speed

Kinematic Predictors of Kinetics Braking Impulse

Wille et al. (2014). J Orthop Sports Phys Ther

Foot Inclination Angle at Contact

Knee Flexion Angle Initial Contact

Excessive	Mild	Appropriate	Mild	Excessive
decrease	decrease	(~20°)	increase	increase

Tibial Inclination Angle Initial Contact

Vertical Mild inclination	Excessive inclination
------------------------------	-----------------------

Stride Length

Reduction in stride length reduces risk of tibial stress injury

Edwards et al. (2009) Med Sci Sports Exerc

- positively effects:
 - Ioading rate
 - braking impulse
 - tibia inclination angle
 - COM vertical displacement
- Increasing step rate is simple strategy to teach/learn
 - Maintain constant speed

Step Rate and Tibial Accelerations

- Decreased tibial accelerations with increased step rate
 - Constant speed Clarke et al. (1995) J Sports Sci

(% change from PSF)

More vertical leg posture at initial contact

Farley and Gonzalez (1996) J Biomechanics

Calf and Achilles Injuries

Running mechanics of concern:

- Peak ankle dorsiflexion during stance
- COM vertical displacement

Provocative Running Mechanics

- Pain is typically during propulsive phase of stance (50-100%)
 - Generally not during loading response
- Excessive ankle dorsiflexion during midstance
 - Should be assessed relative to ankle dorsiflexion observed in weightbearing
 - excessive strain and wrapping prior to initiation of concentric contraction
- If medial insertional pain, look for high rate of pronation during contact

Achilles Case

9:30 min/mile; 150 steps/min

- 37 y/o male
- Recurrent Achilles symptoms past 2 yrs
- Midportion tendon pain with palpation (5cm from insertion)
- Limited weightbearing DF
- COM vertical displacement
 ~11-12 cm
- Increased peak dorsiflexion in stance

How to Reduce Dorsiflexion Angle?

- Increased ankle dorsiflexion is related to increased knee flexion
- Reduce both by increasing lower extremity stiffness (increase step rate)
 - Spend less time on the ground

Morin et al. (2007) *J Biomechanics* Farley and Gonzalez (1996) *J Biomechanics*

UW Neuromuscular

Biomecha

Heavy Load Eccentrics

- Proven benefit for Achilles tendinopathies
 - "2-up, 1-down"
 - midportion and insertional, just change range
- Incorporate into recovery from calf strain, when appropriate
 - Generally after 7-10 days depending on severity

- □ Consider as preventative exercise for runners over age of 35 yr
 - Potentially slow the increased compliance of Achilles tendon associated with aging

Gastrocnemius Aponeurosis

Case Outcome

Pre 9:30 min/mile @ 150 steps/min

4wks post 9:30 min/mile @ 160 steps/min

- □ 4 wk follow-up
 - No pain or symptoms
 - 80% back to pre-injury level; remaining limitation is reduced mileage

Medial Tibial Stress Syndrome

UW Neuromuscula Biomechanic

Running mechanics of concern:

- Foot-inclination angle
- Midline cross-over
- Foot pronation
- Toe-out

Foot Placement

Step Width

Decreases with increasing speed

Relative to COM □ Crossover

displays cross-over 3.99 m 10 -10 LEFT 0 cm

RIGHT

-10

Right foot

0

10

Cavanagh (1987) Foot Ankle

UW Neuromuscular Biomechanics Lab

Bone Stress and Cross-over

Tibial stress associated with step width

Greater compression along medial aspect of tibia with narrow step width

Meardon and Derrick (2014). J Biomech

UW Neuromuscular

Biomechanics

Lab

Foot-COM Placement at Midstance

П

- Location of the foot with respect to the whole body's line of gravity (LOG)
- As running speed increases, this distance decreases

9:30 min/mile

MTSS and Crossover

How to Reduce Cross-over?

- □ Increase step width
 - Verbal cueing
 - Mirror retraining
- Commonly overcorrected at start of retraining
- May influence performance
 - 9% net increase in metabolic power with 8% increase in step width

Arellano and Kram (2011) J Biomech

UW Neuromu

- Address gluteal muscle weakness/firing
 - Narrow step width may be strategy to create stable stance position thereby reducing need for muscular stabilization at hip

Exertional Compartment Syndrome

- Running mechanics of concern:
 - Foot-inclination angle
 - Ankle dorsiflexion during swing
 - □ Rate and magnitude

Forefoot Strike

- 2 patients with chronic exertional compartment syndrome
 - 1: 4yr history of bilateral symptoms
 - 2: 7 months s/p right fasciotomy with symptom return bilateral
- Retraining: emphasis on forefoot landing and Pose technique
 - 3x/wk (1hr each) for 6 weeks
- Clinical outcomes:
 - Reduced intracompartmental pressures postrunning
 - 6wk F/U: GROC "great deal better"
 - 7 month F/U: still running pain-free

What about Swing Phase?

UW Neuromuscular

Biomechanics

Lab

Summary

UW Sports Medicine Runners' Clinic 2D Video Analysis

UW^Health

University of Wisconsin

Sports Medicine

Designed with the common clinician in mind

- Minimal overhead
- Reimbursable
- 60min or less

	Left	Right
Initial Contact		
Foot-Strike Pattern	Heel Strike	Heel Strike
	Rear Foot	Rear Foot
	Mid-Foot	Mid-Foot
	Forefoot	Forefoot
	Toe-Strike	Toe-Strike
Tibial Inclination	Vertical	Vertical
(vertical or mild inclination)	Mild Inclination	Mild Inclination
(ver dear of finite menhadon)	Excessive Inclination	Excessive Inclination
Knee Flexion Angle	Excessive Decrease	Excessive Decrease
(~20°)	Mild Decrease	Mild Decrease
	Appropriate	Appropriate
	Mild Increase	Mild Increase
	Excessive Increase	Excessive Increase
Mid-Stance		
Knee Flexion Angle	Excessive Decrease	Excessive Decrease
(~40°)	Mild Decrease	Mild Decrease
	Appropriate	Appropriate
	Mild Increase	Mild Increase
	Excessive Increase	Excessive Increase
Ankle Dorsiflexion Angle	Appropriate	Appropriate
(5.20° relative to M/P)	Mild Inclination	Mild Inclination
(S-20, Telative to WB)	Excessive Inclination	Excessive Inclination
Pushoff		
Hip Extension Angle	Excessive flexion	Excessive flexion
(0-5°)	Mild flexion	Mild flexion
	Appropriate	Appropriate
	Mild extension	Mild extension
	Excessive extension	Excessive extension
Pelvic Tilt	Excessive anterior	Excessive anterior
(5-10°)	Mild anterior	Mild anterior
	Appropriate	Appropriate
	Mild posterior	Mild posterior
	Excessive posterior	Excessive posterior
Lumbar Lordosis	Excessive flexion	Excessive flexion
(slight extension)	Mild flexion	Mild flexion
	Appropriate	Appropriate
	Mild lordosis	Mild lordosis
	Excessive lordosis	Excessive lordosis
Full Gait Cycle		
COM Vertical Excursion	Appropriate	Appropriate
(6-8 cm)	Mild increase	Mild increase
(Excessive increase	Excessive increase
Forward Trunk Lean	Excessive Backward	
(5-10° forward)	Mild Backward	
	Appropriate	
	Mild Forward	
	Excessiv	e Forward

Thank You

Madison, WI, USA

