Scapular Stabilization in the Overhead Athlete

Tim L. Uhl PhD ATC PT FNATA
Division of Athletic Training
Department of Rehabilitation Sciences
College of Health Sciences
University of Kentucky

COI Disclosure Information Tim L. Uhl PhD PT ATC FNATA

Leadership position/advisory role for: ASSET Past-President

Patents and royalties from: New Option Sports Inc.

Honoraria (lecture fee) from: ASSET, Clemson Sports Medicine, Aspetera Hospital, Blount Memorial Hospital,

Grant/Research funding from: Alignmed, NATA, NIH

Other remuneration from: Lexington Clinic funds PhD Student

Greetings Commonwealth of Kentucky

Affiliations

American Society of Shoulder Elbow Therapists (www.asset-usa.org)

American Shoulder and Elbow Surgeons (www.ases-assm.org)

Objectives

- 1. Participants will be able to conduct an assessment of scapular stability in overhead athlete with the knowledge of normal adaptations for overhead throwing athletes.
- 2. Participants will have knowledge to recommend interventions to improve scapular stability or mobility to reduce deficits identified during examination.

Outline

- 1. Functional Anatomy: Biomechanics
- 2. Incidence
- 3. Assessment integrated into standard Examination
- 4. Repositioning
- 5. Interpretation
- 6. Intervention

Assessment of Scapular Dyskinesis

 Scapular motion is critical for normal motion and function of upper extremity

- Inman JBJS 1944

- Share our approach to Scapular Assessment and how to incorporate it into shoulder examination
- Explain the interpretation of the clinical tests / findings in order to assimilated in clinical treatments

Function: Appreciate Normal Motor Control and Kinematics before can identify Abnormal

- The ability to lift arm is dependent on proximal stability
 - Joint integrity
 - Scapular motion & musculature
 - Spine motion & musculature

Scapular Force Couple

- Arm Elevation
 - Upper trapezius
 - -Serratus anterior
 - -Lower trapezius
- Understand normal motion allows recognition of abnormal motion

Normal Force Couples in the Shoulder

- Scapulohumeral force couples provide for the tremendous mobility in the upper extremity
 - Inman JBJS 1944
- Deltoid elevates humerus
- Cuff function to compress & stabilize the head
 - Lee CORR 2002
 - Yanagawa J Biom Eng 2008

Superior/Inferior Internal / External Translation Rotation Tilting Ant / Post Tilting Anterior / Posterior Translation Up / Down Rotation

Normal Clinical Observation

- Normal Scapulohumeral Rhythm
- Scapula smoothly rotates upward during elevation with minimal motion in first 60° and rotates smoothly downward during lowering with the medial border remaining flush with thorax
 - Kibler J Sh Elb Surg 2002
 - McClure J Ath Train 2009

Scapular Upward Rotation

Resting Position $2^{\circ} \pm 5^{\circ}$ Normal Range $50^{\circ} \pm 5^{\circ}$

Scapular External Rotation

Loss of Scapular Ext. Rot.

Scapular Posterior Tilting

Resting Position $-8^{\circ} \pm 5^{\circ}$ Normal Range $30^{\circ} \pm 15^{\circ}$

Decreased Posterior Tilt

- Increased Anterior Tilt
- Scapular Dysrhythmia

McClure J Ath Train 2009

Shoulder and Elbow Tendonopathy is Common

- 11.2/1000 patients presenting to primary care MD with shoulder pain
 - van der Windt DA et al., Annals Rheum Dis 1995
- Collegiate Baseball, Softball, and Volleyball 3rd most common shoulder injury
 - Dick et al., J Athl Train. 2007
 - Marshall et al., J Athl Train. 2007
 - Agel J et al., J Athl Train. 2007
- Lateral epicondylalgia has a prevalence of 1-2% in general population
 - Shiri R et al., Am J Epidemiol. 2006
- In elite junior tennis players as high as 12%
 - Winge et al., Int J Sports Med 1989

Scapular Dyskinesis is Common

- The dominant side scapula appears to be more internally rotated and anteriorly tilted in 43 healthy college athletes
 - -Oyama JAT 2009
- 76% of 56 participants had at least one plane of scapular asymmetry
 - -Uhl Arthroscopy 2009
- Observation of dyskinesis does not necessarily indicate injury <u>but in the</u> <u>presence of symptoms</u> should be a trigger to further investigate causes

Incidence of Scapular Dyskinesis

- Dyskinesis Impairment of voluntary movement resulting in fragmentary movements.
 - Dorland's Medical Dictionary
- Scapular Dyskinesis is intimately involved with glenohumeral derangement
 - 64% Instability
 - 100% Impingement
 - -Warner, CORR 1992

Clinical Assessment of Scapula In Context of Comprehensive

- History
- Assessment Assessment
- Observation
 - Posture
 - Scapular assessment
 - Static position
 - Dynamic motion
 - · Scapular Repositioning
- Function
 - ROM
 - Strength
 - Special Tests
- Palpation
- Neurological
 - Frisch's Systematic Musculoskeletal Examination 1994

What is wrong with this young man's shoulder?

History

- Location of pain
 - Medial border scapular pain is a common referral location for cervical joint dysfunction
- Mechanism of injury
 - Motor vehicle accidents or forceful eccentric load
 - Prolonged past Intervention failure
 - Palpate for peri-scapular muscular defects
 - Scapular muscle detachment
 - Kibler J Sh Elbow Surg 2014

http://www.google.com/search?q=cervical+spine+referred+pain+pattern

http://myimpossiblemedicaljourney.blogspot.com/2013/02/scapular-pain-validation.html

Observation Static Posture: Forward Head Rounded Shoulder

- Cited as a potential cause of shoulder and neck pain
 - Kamkar et al., JOSPT 1993
- Comparison of posture between patients with and without shoulder symptoms find no relationship with pain or impingement
 - Greenfield et al., JOSPT 1995
 - Lewis et al., JSES 2005

Slouched Thoracic Posture Reduces Motion & Strength in Healthy

- Shoulder abduction ROM
 - Erect: 158 + 11°
 - Slouched: 134 + 14°
 - Loss of 24°
- Scapular Kinematics
- Upward rotation:
 - Erect: 43 +8°
 - Slouched: 38 ± 7°
 - Loss of 6°
- Posterior tilt
 - Erect: 45 + 7°
 - Slouched: 41 + 7°
 - Loss of 4°
 - Kebaetse et al. Arch Phy Med Rehab 1999

Double Square Technique to Measure Shoulder Posture

- Differences between sides
 - Dominant side more forward
 - Peterson, JOSPT 1997
- Posture measured this way can provide objective measure of improvement
 - Klumper, JSR 2006
 - Lynch, BJSM 2010

Static Scapular Assessment

- Observational descriptions of static positions
 - Downward Rotation
 - Depression
 - Abduction
 - Winging and tilting syndrome
 - Sahrmann <u>Diagnosis and</u> <u>Treatment of Movement</u> <u>Impairment Syndromes</u> 1999

Thrower's Shoulder are Different

- Healthy
- Compared to nonthrowers
- ~ 7° more UR
- ~7-10° more IR
- ~7-10° more Scapular retraction above 90°
- = PT & Scapular elevation
 - Myers Am J Sports Med 2005

- Internal Impingement Throwers vs. healthy throwers
- = UR, IR, Protraction
- ↑ Clavicular Elevation
- 个 Posterior Tilt ~5°
 - Laudner JOSPT 2006
- Expect to see scapular variations when evaluating an overhead athlete

Clinical Assessment of Dynamic Shoulder Motion

- Patients often present with normal looking mobility
- A complete shoulder examination requires posterior inspection

Clinical Assessment of Dynamic Shoulder Motion

- 4 categories of relative asymmetry during motion
- Inter- & Intra-rater (independent) reliability was moderate (k=.42 to .49)

- Kibler et al., JSES 2001

Scapular Dyskinesis Test of Independent Scapular Motion

- 142 Athletes were examined
- Added load (3 or 5 lbs)
- Dyskinesis
 - Dysrhytmia not smooth
 - Winging medial border displaced
- Each scapula was categorized
 - Normal
 - Subtle
 - Obvious

- 75-82% percent agreement between raters
 - Kappa = .5 .6
 - McClure et al., JAT 2009

Dynamic Scapular Assessment

- Scapular Dykiniesis Test 2 categories
 - Obvious / Normal
 - McClure et al., J Ath. Train 2009
- Kiblers' Scapular Assessment 2 categories
 - Yes / No
 - Uhl et al., Arthroscopy 2009
- Presence of Scapular Dyskinesis was not directly related to shoulder pain
- International Classification of Function
 - Body Functions
 - Impairments (ROM, Strength, Motor Control, Scapular Dyskinesis)
 - Body Structures
 - Activities and Participation

Scapular Muscle Alterations in Patients with Shoulder Impingement

- 26 manual labors with impingement were compared to 26 manual labors without impingement ↑Upper and Lower Trapezius between 60-120° with a load
 - Ludewig & Cook PT 2000

 Vactivity of the Serratus Anterior throughout the range of motion regardless of the load in patients with Shoulder impingement

Scapular Muscle Activation in Anterior Instability during Scaption

Healthy

Scapular Dyskinesis Assessment

- Scapulohumeral Rhythm is necessary for normal function
- Scapular moves 3 dimensionally
- Alterations can be observed
 - Motor Control issues
 - Scapular muscular activation are altered
 - Mobility Issues
 - · Glenohumeral derangement
 - Neurological Issues
 - Spinal Accessory
 - Long Thoracic

Repositioning the Scapula to Alter Symptoms

- Many impingement tests drive the humerus into the scapula to reproduce symptoms
 - Painful arc
 - Neer Impingement
- Would moving the scapula out of the way of the humerus alter symptoms
 - 1. Scapular Assistance Test
 - 2. Scapular Retraction Test
- Similar to distraction test for cervical radicular symptoms

Logic of Reposition comes

from Malposition

- Clinician is presented with shoulder pain and malposition of the <u>humerus</u>
- Rx is reposition the <u>humerus</u> to reduce pain

Malposition

- Clinician is presented with shoulder pain and malposition of the scapula
- Rx is reposition the scapula to reduce pain

Kinematic Study of SAT Results of Posterior Tilt (n=16)

7°±1° increase at every phase on average (p<.001)

Pain reduced by 1 level in 9 symptomatic patients (p=.02)

Sub-Acromial Space

- Ultrasound assessment during Scapular Assistance Test
- Significantly increased space at 45 & 90º of Scaption
 - 1.2 mm distance from anterior acromion to humeral head
 - 3-4º of increased posterior tilt
 - 7º of increased upward rotation

- Seitz JSES 2012

Scapular Retraction Test (SRT)

- Perform provocative test to assess arm elevation strength
- Repeat test with patient actively retracting the scapula and clinician manually stabilizing scapular medial border toward the thorax then retest strength
- (+) Test Improved strength and /or pain reduction
- Interpretation to differentiate between true and apparent rotator cuff weakness in patients with shoulder pain

- Kibler & McMullen JAAOS 2003

Retraction Test

- Increase in strength in retracted position
 - 24% in injured
 - 13% in controls
- No change in pain
- Apparent cuff weakness may be arising from poor scapular control
 - Kibler et al., AJSM 2006
- Scapular Reposition Test only manual support
- 98 overhead athletes with impingement signs
 - 46 had pain reduction of at least 1pt
 - <30% had strength increase with SRT</p>
 - Tate et al. JOSPT 2008

Results- Kinematics (Relative Change from Rest)

Kibler JOSPT 2009

	Not Stab.	Stab	Change	р
UR	15.7±6.4°	15±9°	0	NS
IR	8.1±9.3°	7±10°	-8.9°	.002
PT	5±5°	16.6±7°	11.6°	.001
Prot.	2.6±	-2.6±	-5.3	.005
Elev.	8.9±11°	-5.8±27°	-14	.006

Be careful of the Myopic View

- Without proximal control distal movement are compensating for a poor foundation
- Breakdown along the kinetic chain can
 - Increase demand on upper extremity musculature
 - Change the biomechanical stresses
 - Diminish performance
- 47% of 199 overhead throwing athletes with elbow pain had poor single leg squat control
 - Kibler et al., AOSSM abstract 2009

Functional Assessment of Core Stability

- Single leg balance
 - Trendlenberg
- SLS squat
 - Frontal plane control
 - Hip
 - Knee
- Interpretation
 - Poor basic mat program that develops local muscle activation
 - Good incorporate with distal extremity rehabilitation

Shoulder Mobility

- Isolate glenohumeral motion
- Stabilize scapula improves reliability

 Awan, Arch Phy Med Rehab 2002

- Throwing athlete internal rotation deficit is common
- Loss of IR and TROM is predictive of injury Wilk AJSM 2011

 Horizontal Adduction deficit is present in pathological shoulder

- Myers, AJSM 2006

 Improves as symptoms improved during rehabilitation

- Tyler, AJSM 2010

Muscle Testing

- Rotator Cuff
 - Thumb up
 - Lift Off
 - External Rotation
 - Kelly et al., Am J Sports Med 1996
- Scapular Muscle Test
 - Isolated Upper & Lower Trapezius
 - Testing motions for
 - Serratus
 - . Rhomboids & Middle Trapezius
 - Michener Phys Ther 2005

Assessment to Intervention

- History
- Observation
 - Static
 - Dynamic
- Function
 - Mobility ROM End Feel
 - Motor Control -Strength
- Palpation
- Neurological
 - Spinal lesion
 - EMG/NCV if necessary

- Level of Irritability
 - Less is more
- Demand level
 - What is patient's expectation
- Time of season
- Impairments identified in exam
 - Prioritize problems
 - Could I alter symptoms during active motion
 - Scapula
 - Humeral

- Is it a mobility problem
- Is it a stability (motor control) issue
- Where is pain coming from?

Scenario

- Tennis player presents with acute tendonopathy of rotator cuff 2° due to increased activity level over last 5 days
- Limited ROM in ER and IR
- Weak and painful ABD & ER
- Scapular dyskinesis

Scapular Rehabilitation Algorithm

Ellenbecker & Cools Br J Sports Med 2010

Rehabilitation Plan

Mobility Interventions

- Need to re-establish mobility or lengthen tight tissues
 - Pectoralis Minor/Major
 - Posterior Shoulder Tightness
 - Cervical / Thoracic spinal joint mobility

Address Mobility: Anterior

Structures

- Watch for <u>leaning</u>
- Emphasize stepping

• Watch for Neurological Symptoms

Stretching Matrix

Anterior			
Home	Towel Roll	1 arm doorway	2 arm doorway
Clinic	Massage/ Manual	Contract/Relax	Manual w/ trunk
Posterior			
Home	Cross body	Cross body stabilized	Sleeper stretch
Clinic	Massage/ Manual	Contract/Relax	Active stretch
Cervical/T	horacic		
Home	Supine AROM	Sitting AROM	Manual overpressure
Clinic	PROM and Massage	Contract Relax	Mobilization
Inferior*			
Home	Towel slides	Doorway slides	
Clinic	Massage/ Manual	Contract/Relax	Active stretch

Address Mobility & Motor Control: Anterior Structures

- Encourage Cervical Retraction and Scapular Retractors
 - Prevent irritation
 - Activation of scapular muscles may facilitates reciprocal inhibition of tight anterior musculature

Address Mobility: Anterior Structures

- Other muscles attach to the coracoid
 - Short head of the biceps
 - Coracobrachialis
- Constantly check for scapular position & neurological Sx's

Stretching the Posterior Tissues

- Adaptive changes can occur shortening posterior cuff/capsule
 - Kibler et al., Clin Sports Med
- Cross body adduction with scapula stable and humerus internally rotating
- Cross body adduction increases IR motion by 20°
- McClure et al., CSM 2005
 Hold Stretch 30 seconds (No Pain)
 - Bandy et al., Phy Ther 1994
- Considers variations in arm position and stabilizing scapula

Addressing Posterior Shoulder Tightness and Scapular Stability

- Stabilizing scapula with overpressure
- Integrate massage to teres minor/latissimus dorsi
 - Trigger point release

Spinal Mobilization Options

- Various techniques can be applied
- Consider patient level of irritability
 - Contraindications
- Great description & videos online through JOSPT
 - Tate et al., JOSPT 2010

Scenario

- Elite Volleyball player with chronic tendonopathy of rotator cuff for last year
- Pain dramatically increases in the third set
- No AROM or PROM limitations
- Weak and painful Flexion & ER
- Scapular dyskinesis
 - (+) Scapular Retraction Test
- Start of the season

Fundamental Program

- Side-lying
 - Elevation
 - ER
- Prone
 - Horizontal Abduction with ER
 - Extension
- Result improved SPADI score by ~20 points in 6 weeks
- Effectively reduced UT during active elevation

Scapular Muscle Rehabilitation **Exercises in Overhead Athletes** With Impingement Symptoms

Effect of a 6-Week Training Program on **Muscle Recruitment and Functional Outcome**

Kristof De Mey, *1 PT, Lieven Danneels, ¹ PT, PhD, Barbara Cagnie, ¹ PT, PhD, and Ann M, Cools, ¹ PT, PhD investigation performed at Ghent University Hospital, Department of Rehabilitation Sciences and Physiotherapy, Ghent, Belglum

Motor Control: Strengthening

- Continuum of functional exercises based on irritability
 - Isometric Low row
 - Prone extension at 0°

 - Prone horizontal abduction at 90°
- Scapular control and pain response

Conscious Control Increases Motor Activity

- Visual, Auditory, & Kinesthetic cueing of scapular orientation
 - Increased Scapular **Muscular Recruitment** by 7-10% in Sidelying ER & Prone Extension
 - No alteration of UT/LT muscle ratios occurred
 - DeMey et al., JOSPT, 2013

- Auditory & Kinesthetic cueing of scapular of scapular retraction during PHA
 - Increased lower trapezius activation over written instructions by 10-15%
 - Seitz, J Electromyo **Kines 2014**

Exercise Continuum

Managing Volume of Swings

- Volleyball athlete was determined to have SLAP lesion prior to season with chronic shoulder pain
- Alternated days of overhead swings throughout the season
- Participated in all game sets (n=118)
- Attempted most attacks (n=1010) had 21.5% kill rate

Early Changes Predict Outcomes

- Analysis of 107 patients with sub-acromial impingement signs revealed 2 primary predictors
 - For every 10% improvement in the first 5 visits (2 wks) increase the chance of a good outcome by 20%
 - Scapular retraction exercises given in first 5 visits increased the chance of good outcome by 4 fold

Altering Scapular Kinematics is Difficult

- 6 wk intervention on patients clinically with Impingement Syndrome
 - Posture
 - Shoulder Flexibility
 - Rotator Cuff Strengthening
- Dependent Measures
 - Scapular Kinematics
 - Posture
 - Strength
 - Function
 - McClure Phy Ther 2004

- Improved
 - Strength ↑ 15-25%
 - Function ↑ 20 points
 - IR and ER ↑ 20%
- No Change
 - Posture
 - Scapular Kinematics

Summary

- Functional Anatomy: Biomechanics Know and understand normal to recognize abnormal
 - Variations of normal among athletes
- Incidence Common
- Assessment integrated into standard Examination Easily
 - Keep it simple
- Repositioning—Reduction of pain indicates scapular position/motion is a factor in shoulder pain
- Interpretation Impairment that may need to be incorporated into treatment intervention
- Intervention Keep it patient centered
 - Mobility issue
 - Motor Control issue
 - Modulate pain with exercise selected

